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Previous studies are generally confined to establishing the fundamental validity of the 
assumption of rothalpy conservation and usually comment on its significance without 
providing any quantitative assessments to support their stated conclusion. This study 
attempts to quantify in terms of the order of error of temperature and velocity that may 
typically occur in practical turbomachine calculations involving a real fluid (one supporting 
both viscous stress and heat conduction) as a result of assuming that rothalpy is con- 
served. To this end, (constant) transport coefficients for molecular/turbulent momentum 
and heat conduction are included in the analysis, which derives a complete general 
expression for the transport of rothalpy in f low through generalised rotor blades. Flow 
norms are taken from a typical centrifugal compressor (being regarded as a more extreme 
geometry) to assess orders of error arising from each term in the rothalpy transport 
equation for a particle. In assessing the error significance, account is taken of how rothalpy 
conservation might be employed in a practical calculation scheme and to what use the 
error variable might subsequently be put. The general conclusion is that errors arising from 
the assumption of rothalpy conservation are, in practice, negligible. In particular, the effect 
of rotating blades, as compared to stationary ones is completely negligible, and one of the 
greatest errors arises from the term involving Prandtl number. If the Prandtl number is 
assumed to be unity, as has been the case in some classical boundary layer studies, then 
this very significant term vanishes from consideration. 
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Introduction 

Many statements of the proposition that rothalpy is conserved in 
turbomachinery flows have been made over the last half century, 
and several authors have considered the extent of the validity of 
this statement. Recently, Lyman (1993) has provided a good 
background to past developments in this area, and this reference 
is commended to those wishing to pursue such developments. 
The validity of the proposition in the idealised model of steady 
relative isentropic flow was long ago established and is exact in 
the sense that the initial constraints of the fluid model lead 
algebraically to the exact mathematical result of conservation. In 
the present study, interest centres about its validity in steady 
relative flow of a real fluid through rotating passages with 
adiabatic walls, especially as in many instances, this validity has 
been assumed without proof, and where proof has been given, 
restrictive circumstances have applied. It greatly simplifies many 
flow calculation schemes in which friction is admitted if the 
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proposition is assumed to remain true, and it is possible to devise 
fluid models in which it is true even where the model, although 
plausible from a continuum viewpoint, is clearly incorrect for a 
real fluid. The issue under consideration here is whether, from a 
practical engineering point of view, the assumption of rothalpy 
conservation in a real frictional fluid leads to insignificant or 
acceptable errors in practice. While some previous studies have 
addressed the issue of the untruth of the proposition in an exact 
sense (as defined above), there appears to be an absence of any 
detailed quantitative assessment of error magnitudes and their 
precise cause. It is this neglected aspect which forms the subject 
of this study where it emerges that in general the error is 
completely negligible, and, importantly, if the common approxi- 
mation of unity Prandtl number is assumed, then one of the most 
significant of the error terms vanishes as a result. 

It should be observed that this study is not generally amenable 
to numerical evaluation in the sense of making a critical study of 
results obtained from numerical schemes, because such schemes 
as are usually applied to turbomachinery analysis that include 
appropriate models of the physical transport processes for mo- 
mentum (=  molecular/turbulent viscosity) and energy (=  heat 
conduction/convection) generally use large-eddy simulation 
models with grids which generate numerical error far in excess of 
that being here established. This paper follows a well-established 

0142-727X/96/$15.00 
PII S0142-727X(96)00030-9 



precedent of looking analytically at a typical case in order to 
make error assessments. Indeed, it would have to be admitted 
that numerical schemes based even on isentropic flow models 
frequently produce localised error (e.g., in comer flow) which are 
gross in the sense of exhibiting a loss of several percentages of 
local stagnation pressure. This is particularly true in the three- 
dimensional (3-D) schemes in common use. The direct numerical 
simulation (DNS) schemes which might otherwise offer an oppor- 
tunity are not commonly applied in turbomachinery applications 
if only because of the huge computer resources required to 
implement them on the scale demanded by this application. This 
analysis elicits levels of error which are far below the level of 
numerical error implicit in most numerical schemes. However, 
the ultimate defence of the analytical approach is that the results 
are uncontaminated by any numerical error whether assessable 
or not. 

The majority of earlier studies commence by admitting real 
fluid effects in terms of introducing deviatoric stress and the heat 
flux vector into consideration without further consideration of 
the transport processes which give rise to these macroscopic 
concepts. Usually, the adiabatic fluid restriction is applied (not to 
be confused with the adiabatic wall condition) leaving only the 
deviatoric stress in consideration without regard for the real 
(kinetic) fluid consideration that the mechanism of molecular 
transport by random migration, which, in the case of momentum, 
leads to the concept of deviatoric stress, by the same token must 
admit the transport of energy leading to heat transfer by conduc- 
tion. Ignoring heat transport is acceptable when considering 
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incompressible flow if only the mechanical flow features (to the 
exclusion of thermodynamic ones) are of interest, because (as- 
suming temperature-independent transport coefficients) temper- 
ature then does not modify the mechanical flow field, but analy- 
ses for compressible flow often also follow this development 
where the thermodynamic interaction may not be negligible. 
Admission of momentum transport (deviatoric stress) while deny- 
ing energy transport (heat conduction) represents an inconsistent 
model of a real fluid. Such an example of a real fluid inconsis- 
tency exists in the proposal of the rothalpy-conserving loss model 
of Bosman and Marsh (1974), which is consistent at the contin- 
uum level and is achieved not by the conduction of the dissipated 
energy as interpreted by Lyman (1993) (since the model was 
explicitly adiabatic in omitting heat flux) but by the consideration 
that the energy lost by a particle due to work done in overcoming 
the drag force of the surrounding flow is replaced by the dissipa- 
tion energy generated by the continuous distortion of the parti- 
cle. The present study introduces transport coefficients for mo- 
mentum and energy transfer and proceeds to consider on a 
term-by-term basis the typical physical magnitudes of error which 
would result from the assumption of rothalpy conservation in 
respect to using this equation to determine either the tempera- 
ture or speed of the flow at a point in a typical centrifugal 
compressor. In particular, two-dimensional (2-D) calculation 
schemes based on streamline curvature techniques have com- 
monly used (explicitly or implicitly) rothalpy conservation as a 
basis for determining flow speed, but it has also been used in 
some 3-D calculation schemes, whereas, in 2-D streamfunction 

Notation* 

c~ 
C c 
h 
i , j , k  
r. 

I 
k 
l 
Mr 
0 
P 
P 
Pe 
Pr 
q 

Qin 
Rcs 
Re 
Ro 
S 

t 
T 
U 
V 
W 
X 

Greek 

specific heat at constant pressure ~/ 
specific heat at constant volume K 
static enthalpy 
general Cartesian coordinate directions v 
resultant force vector on particle due to viscous 
stresses p 
rothalpy ~r 
thermal conductivity + 
typical length scale to 
relative Mach number 
principal centre of curvature of streamline 
static pressure 
point under consideration in flow field 1, 2, 3 
Peclet number i, j, k 
Prandtl number t 
heat flux density vector = directional heat transfer 
per unit area per unit time 
heat transfer to particle 
vector principal radius of curvature of streamline 
Reynolds number 
Rosby number 
entropy 
time 
static temperature 
velocity vector of fixed point P in the rotating frame 
fluid velocity vector relative to stationary frame 
fluid velocity vector relative to rotating frame 
Cartesian coordinate 

* All extensive properties are on a unit mass basis. In the text 
"rotating frame" refers to a reference frame rotating with the 
blades. All algebraic equations assume consistent units and, 
therefore, contain no units conversion constants. All dimen- 
sional numerical values are in MKS units. 

isentropic index (=  specific heat ratio Cp/C,) 
thermal diffusivity 
dynamic viscosity 
kinematic viscosity 
power dissipation by deviatoric stresses on particle 
fluid density 
deviatoric (=  viscous/turbulent) stress 
angle 
angular velocity of rotating frame 

Subscripts 

specified Cartesian components 
general Cartesian components 
indicating time constant derivative 

Superscripts 

(tilde) norm value 
(prime) normalised value 

Operators 

x 
A 
V 
a/Ot 

DJDt 
~iJ 

I I  

scalar product 
vector product 
increment in value on passage through the blade row 
vector gradient operator 
temporal derivative for fixed observer in rotating 
frame 
temporal derivative for particle observer 
unit tensor 
modular value 
is of the decimal order of 
has the approximate value 
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and 3-D schemes, it usually forms a basis for temperature deter- 
mination. The attraction of its use lies in the saving of calcula- 
tions consequent on not having to solve for the variable by 
numerical integration of an additional discretised differential or 
integral equation. 

observing Equation 4 for constant Cp 

DQin 
= KV2h (9) 

Dt 

Analysis 

The introductory forms of the equations below, which are given 
in terms of the relative velocity W, are well established and are 
presented without derivation. They conform to standard turbo- 
machinery calculation practice wherein the flow is considered 
steady relative to the blade row, fluctuations due to other local 
blade rows in relative motion being neglected. Transport coeffi- 
cients are assumed constant throughout the paper. 

Continuity 

1 Dp 
- - - + V . W = 0  
p Dt 

(1) 

Equat ion o f  mo t ion  

For blades rotating at constant angular velocity to 

DW - V  + 2to X W + -  Vp=F~ 
Dt p 

(2) 

A form of the relative streamwise component of this equation is 
obtained by operating on it with the scalar product of the relative 
velocity W, which for steady relative flow, i.e. 

and observing A10, is 

D ( W 2 - U  2 ) 1 D p  
Dt 2 + -- - -  = W-  F~ (3) p Dt 

Definition of rothalpy (I) 

h = c j  
W 2 _ U 2 

I=-h + - -  (4) 
2 

1st law 

Dh DQi n 1 Dp 

Dt Dt p Dt 
+6 (5) 

hence by Equation 4 

DI D( W2-U 2) 
- - ~ - -  h +  
Dt Dt 

DQin D ( W 2 - U 2 )  
+ - -  + - - -  

Dt -'~ 2 

1Dp 
p Dt 

+6 (6) 

Fourier heat conduction 

q = - k V T  (7) 

which for constant k yields 

Dai  n 1 k 
- V  • q = - V2T 

Dt p p 
(8) 

k 
K ~ P 

pc~ 

Equation for the transport of rothalpy 

Substituting 3 and 9 in Equation 6 yields 

U2 W e ) 
D/  = KV2 1+  + W . F ~  +~  
Dt 2 2 

(10) 

and introducing the Prandtl number Pr ---- ( v / k )  while observing 
the details of Appendix A, we obtain the following form: 

_ ( DI=K(V2I+2t°e)+vDt  1 - p r ]  ~ 2 ] 

+ v [ 1  D ( _ l D p t  + 0W/ 0Wj 2 ( 1 D p ] 2 ]  

[ 3 - ~  ~ p Dt ] Oxj Ox i 3 [ p Dt ] ] 
(11) 

where 

oxj ox~ t°x,)  tox~] t°x3 

owl ow2 ow2 ow3 aw3 owl) 
+ 2  - - 4 - - - - + - -  

OX 2 OX 1 OX 3 0 X  2 OX 1 0 X  3 
(12) 

and a physical interpretation of this term may be seen in Appen- 
dices A and B. 

This equation can be given the more general form below by 
nondimensionalising in terms of a relative velocity norm if" and 
length norm l, which together provide a time norm 

[ 
i ~  . (13) 

W 

Because I is an energy quantity with an arbitrary datum because 
of the temperature; i.e., practical calculations would not be 
disturbed by assuming I to be zero at flow entry, I.V 2 is a 
preferred divisor for nondimensionalising Equation 11. Thus 
defining a normalised time 

t 
t '  -~ = (14) 

t 

then 

D 1 D  
Dt' = "i Dt (15) 
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which with the further definitions of primed variables indicating 
the normalised values 

W W I _ 
# 

X 
1 

V'2 ~ [2V 2 

I 
I '--- 1~.2 (16) 

and the predefined Reynolds Re, Prandtl Pr, Peclet Pe, and 
Rosby Ro numbers (assuming constant transport properties) 

Re --- 

~G Pr = Pr --- 
k 

Pe ~- Pr Re 

Ro =- ---z- (17) 
W 

enables Equation 11 to be written 

o,,_,( 
Dt' Pe (V'2I '  + 2R°2)  + ( P r -  1)V 'z 

[1 O ( _ !  O.~l ] OWitOW/  2 (~ O~Pt )2] ) 
+Pr  Dt-- W p Dt ) + Ox~f Ox~ 3 ~ p Dt 

(18) 

Equation 11 when applied in the stationary reference flame 
(where l = h  o and W = V )  with the usual thin collateral 
boundary-layer approximation imposed will be recognised as the 
familiar result 

Dho [32ho)+v(1  , 1 I 32 IV2 1 
Dt = K [ - ~ y  2 -Prr ] 3y z t 2 ] (19) 

wherein for Pr = 1, y being displacement normal to the wall, the 
well-known observation is recovered that h 0 is uniform is a 
solution, and therefore h 0 is conserved (Shapiro (1954); Gold- 
stein (1938). 

It should be observed that entropy is absent from the mathe- 
matical development here presented, because the concept is not 
relevant to the discussion as entropy is a secondary level concept 
resulting from the primary level concepts of dissipation rate and 
heat transfer which reflect fundamental physical transport pro- 
cesses; namely, 

Ds DOi n 
T - -  = ~ + - -  (20) 

Dt Dt 
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Observations 

It can be seen that in the isentropic case where (v, K)= 0 then 
Equation 11 becomes (DI/Dt)= 0 showing that a particle then 
experiences no change in the rothalpy I. It is then tempting to 
present the effect of the transport processes v and K directly in 
terms of the change that does occur in I when these processes 
are admitted, but this is not very meaningful, because this value 
provides no indication of the significance of the error on practi- 
cal engineering calculations. 

The analysis here seeks the order-of-magnitude error by 
which each term in Equation 11 would modify the estimate of 
the increment A of the flow through the blade row, of tempera- 
ture or velocity, as a result of assuming rothalpy conservation. In 
general, the value of I is used to determine the temperature T, 
but it is used alternatively in 2-D schemes employing the stream- 
line curvature technique to determine the relative speed W, the 
direction being determined by streamline fitting to satisfy the 
continuity equation. The presentation of the amount by which I 
itself may change in a typical flow is not of value, because in 
practical calculations, it is not the subject of calculation and 
serves only as an agent as described above. Moreover, its per- 
centage change is valueless, because being an energy, it is a 
quantity with an arbitrary datum, and in the incompressible case, 
the temperature term becomes a pressure term, and in hydraulic 
and low-speed fan applications, both absolute and gauge pres- 
sure are in common use, so here the alternative datum would 
affect the percentage change in I by a large factor. By Equations 
18 and 4 

Ol' 1 D( W 2 - U  2 ) 

Dt' =- ff¢2 Dt' CpT + 

1 A ( W2-U 2 ) 
-- [71/'2 At' CpT + 5 = (RHS terms) (21) 

giving rise to a speed error 

1(w2) 
~ 2  a - 5 -  = 

AW 
= At ' (RHS terms) (22) 

or a temperature error 

A(T) ~/2 At, 
- -  = ---:- - - ( R H S  terms) 

T Cp 
(23) 

hence, from Equations 22 and 23 

AT ~2 AW AW 
= ~ ~ -  (~l - 1) h~2 1~ (24) T 

where the relative Mach number norm is defined by (7 ~ necessar- 
ily being the absolute value) 

(25) 

The subsequent results are based on values that could corre- 
spond to a centrifugal air compressor achieving a density ratio of 
2.0, at 10,000 rpm and having a meridional path length of the 
order of 10 cm and mean relative speed of the order of 100 m / s  
at 300 K (Table 1). 
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Table 1 Norm values used in subsequent observations 

l.z - -10  -6 
=-1 

At ~ 10 -3 

/,/~es ~10 -1  
(,.) ~-- 103 
C a ~ 103 
K ~ 1 0  -6 

1 
V,-~ ---10 

l 
Ap --- 1 

~102  
( P r -  1) = 1 

=- means (of the decimal order of); A ~- (incremental value in 
passage through blade row). 

The current norms lead by means of Equations 17, 24 and 25 
to the values in Table 2. For the norms as defined at Equations 
13, 14, and 16 At '  -- 1 and that Ax '  -= 1 (always) and will always 
lead by Table 1 to the algebraic order of magnitude approxima- 
tions given in the left-hand column of Table 3. The right-hand 
column of the table states the values of the order of magnitude 
for the current set of norm values and assumed increments. 

The term (7'21 ' ) requires special attention because consider- 
ation of the remaining terms shows, Equation 18, that n l '  --- At ' .  
(largest right-hand term) so that the contribution to (7'21 ' ) from 
the flow direction is from Table 2, of the order of AI '  -~ 1 / P e  = 
10 -7, a second-order error as anticipated from the fact that 
AI---0 in the isentropic flow. If the upstream flow is uniform 
then this is the resulting error level as the contribution to (7'21 ') 
from the cross-flow direction would then be zero. Any significant 
contribution will then only arise from an upstream cross-flow 
variation. For this consideration, a variation of S T =  10°C is 
assumed corresponding to 81' = C p ~ T / I ~  "2 -- 1 0 3 1 0 / ( 1 0 2 )  2 = 1 
and leading to 7'21 ' - -  [ S I ' / ( A x ' )  2] = 1. 

For the core flow errors resulting from each right-hand term 
in Equation 18 are now summarised in Table 4 below where the 
temperature errors are determined from the velocity errors by 
Equation 24, while observing Table 2. Note that from Equation 
24, the temperature must now be the absolute value. 

For the core flow the errors arc seen to be completely 
negligible and 

DI  
- - =  0 (26) 
Dt 

i.e., rothalpy is conserved to all practical engineering intents and 
purposes. If the flow emanates from a uniform upstream source 

Table 2 Values for the standard f low control parameters 

I~e --- 10 7 
lSr ~ 1 
Pe =- 10 7 

~o ---- I 
( , y -  1)/1~/~ 2 _= 10-1 

Table 3 Expressions and values for norms appearing in 
Equation 18 

1 Dp 1 Ap Ap 
- - -  = - 1 

p Dt' ~ At '  r) 
D ( l O p )  1 A ( A p )  A p _ _  

Dt' ~ = ~ (A t ' )  2 - ~ 1 
ow" AW' 
- - = - - L A W '  1 
Ox~ Ax '  

a2W '2 A(AW '2) 
7 ' 2 W  ' 2  = - -  --~ - -  ~-  A W  ' 2  1 

ax '2 (Ax , )  2 

where V21 = 0, then the entire flow field is uniform in I and if, 
as is typically assumed for the upstream condition of an $1 
stream surface, the flow is axisymmetric, then that stream surface 
has a uniform value of I. These observations remain true even 
when the transport coefficients, and hence Pe, are scaled up by a 
factor of 100 to account for strong free-stream turbulence. 

In the boundary layers, the relevant length scale (i.e., bound- 
ary-layer thickness) [ is typically 100 times smaller than the 
particle (not molecular) mean path length scale, so the situation 
here is somewhat different, and the effect of this is indicated in 
Table 5 for laminar boundary layers, however in the context of 
boundary-layer calculation schemes, the error in speed is not 
quoted, because in such a context, I would never be used to 
determine the speed. 

In Table 5, the order of the term in [(aW//Ox~)(aW//Ox'i)] is 
based on the more physically in terpretable  quanti ty 
- 2 ( R c j R 2 s )  • V(W2/2) ,  see Equation B4. The effects are still 
negligible, and the temperature may be determined from the 
assumption of rothalpy conservation down to the wall with negli- 
gible error to all engineering intents and purposes; i.e., 10 -4 , 
based on the above norms. 

In the case of turbulent boundary layers, taking a Boussinesq 
view, the transport coefficients v, K and hence Pc, may need to 
be enhanced by a factor of 100, and, of course, there are now 
additional terms (not treated here) involving their derivatives. 
The assumption of constancy is allowable, because few if any 
calculation schemes take account of variable transport coeffi- 
cients, which, themselves, vary according to empirical origin. 

Table 4 Order of effects of individual terms on temperature 
or velocity for the core f low 

IATt IAWI 
Right-hand term 

F'e- 1"21~02 1 0 -  8 10 - 7 
[ W , 2 ~  

15e - 1,(15 r _ 1)V'2~ ~ - - - )  10 -8 10 -7  

_ __F'r O (__p  ~-7710p) Pe- 1"~-  Dt ' 10 -8 1 0 7  

#e_ ~.#r ow, ow; 10_8 lO_7 
ax; ax; 

Pe- l *P r  - ~ -  P ~ U - ]  ] 10 -8  10 -7  

r~e-l*V'21 ' 10 s 10 -7  
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Table 5 Order of effects of individual terms on temperature 
for the laminar boundary layer 

IATI 
Right-hand term ? 

F)e - 1"21~02 10 -8 

15e 1*(15r-1)V'2 T 10-4 

tSe 1,1~r D ( 1  DO) 
-3 Dt' - p - ~ T  10-8  

15 e 1,151 OW/ OVVj' 10 -4 
ox) ox; 

15e- 1"V'2/'  10 4 

Table 6 is modified as below. 
Here alone the dominant second, fourth, and sixth terms in 

Table 6 may become locally significant, yielding corrections of 
the order of I°C, but again, the blade row rotation term in Ro 
remains insignificant. It should be noted here that the common 
approximation Pr = 1.0 would have eliminated one of the domi- 
nant terms from consideration. Even this largest error is of little 
significance, because its influence on density would be of the 
order of (AT/7  ~) = 10 -2, and although I°C would be significant 
on the mean temperature rise, the small boundary-layer mass 
flux would reduce it by a factor of order [(boundary layer)/(core) 
cross-sectional areas] = ( / ' . / " / 1 0 0 ) { / ( [  2) = 10 - 2 .  Again, then, the 
general conclusion is that with negligible error to all practical 
engineering intents and purposes rothalpy may be considered to 
be conserved. 

C o n c l u s i o n s  

In general, the order of magnitude of error to the estimated 
speed or temperature at a point in the flow field as a result of 
assuming conservation of rothalpy is negligible to all engineering 
intents and purposes. This observation is likely to be true for 
both the core flow and the boundary-layer flow when account is 
taken of what property is likely to be determined using the 

Table 6 Order of effects of individual terms on temperature 
for the turbulent boundary layer 

Inrl 
Right-hand term 

f 

I~e- 1"21~02 10 6 
[W,2~ 

13e-1*(lSr_ 1 ) V ' 2 [ ~ - )  10 -2 

15r 0 ( 1 D p )  
P e -  1 .  _ 3 Ot' p--~7 10-6 

15 e 1,15 r OWl OkVj' - 10-2 
ox; ox; 

- 2 1 0 0 ]  2 ] 
#e l *Pr ( - -~ (  p Ot----T ] ] 10 - 6  

i~e- 1-V,2/, 1 0 - 2  
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assumption and to what use that property will be put. Clearly, the 
assumption could not be used in a boundary-layer context to 
determine near-wall speeds of relative flow, but rothalpy is and 
never would be used for this purpose in any practical calculation 
scheme. The effect of blade rotation is at all times negligible, 
indicating that the observations are common to rotor and stator. 
Bearing in mind that the above norms imply a mass flow rate in 
the core of the order of 10 2 times the flow through the boundary 
layers, it is apparent that the effect of errors in boundary-layer 
values, on the total integrated mass flow values of speed and 
temperature, as determined from rothalpy conservation will be 
negligible. 

These findings are analogous with conclusions drawn from 
the well-established condition of uniform stagnation temperature 
in boundary layers over adiabatic walls with Prandtl number 
unity in the stationary reference frame. For uniform stagnation 
temperature in the stationary frame, we can substitute the more 
general uniform "rothalpy" in the rotating frame. 

In more extreme cases, as in hot turbine flows, larger cross- 
stream temperature variations may lead to temperature errors 
which become unacceptable. However, following the methodol- 
ogy here presented, sensible estimates can be made a priori of 
the likely scale of the predicted temperature error. 
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A p p e n d i x  A 

10crij _ (resultant force on particle due to 
]FIX -- O OXj deviatoric stresses, per unit mass) (A1) 

a,j av~ 

0 Oxj 
(power dissipated on particle by 

deviatoric stresses, per unit mass) 
(A2) 

Note that 

V 2 = _ = 2~o 2 (A3) 

The viscous power dissipation due to the distortionless mo- 
tion of the rotating frame is zero; i.e., O'ij Ofi//Oxj = 0 ,  hence in 
Equation A2 

- - -  + ( A 4 )  

0 0 x j  p Oxj Oxj ] p Oxj 

and 

W o FI x + ~ Wi Offij ffij OWi 10(Wiffij) 
- -  + = -  ( A 5 )  

0 0 X j  P OXj 0 OXj 

Considering a Newtonian fluid 

(Tiy = hi" OX---~ + OX i -- OX k ] ~ij (A6) 
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then with constant ~ and observing that W~B~j = Wy 

{ o [w?] o (ow,) ow, 
+ox--;ox--; 

3 Wj~-~xjt O xi + O x---'] O X--'--k 

[ O 2 (_~_~) 1 O (OWj)  OWiOW 1. 
=~ ~ +~W~Tx, t %1  + % ox~ 

3 0 x  i Ox k ] 
(A7) 

however, because 

0 2 
(A8) 

is the (sum of the squares of the normal strain rates) and 

ow~ owj ] ( owx ow2 ow2 ow3 aw3 ow~ ) 
=-2 - - - -  + t- - -  (A14) 

i~j OX2 ~xl OX30x2 OX10x3 

As shown in appendix B, one of the terms in the brackets on the 
right hand side can be interpreted as 

Ox s Oxi }i.~ R~ 
(A15) 

i.e., 2 (minus the gradient of the relative kinetic energy in the 
direction of the principal radius of curvature of the streamline, 
divided by that radius of curvature) where Rcs =- principal radius 
of curvature of the streamline. In a 2-D, plane flow, as in 
unskewed boundary-layer flow, the other two terms would then 
be zero. 

Appendix B 

Let 1 = the local (=  at point P) flow direction (W) and 2 = the 
direction indicated by the current (=  at time t and point P) 
principal radius of curvature vector (R~) of the streamline. This 
pair (1, 2) define orthogonal coordinates (i.e., W. R~ = 0). Now 
take an origin of coordinates (O) at the streamline principal 
centre of curvature, as shown in Figure B1. Then 

and by Equation 1 

a N _ ow~ 

Oxj Ox k 

1 D p  
- -  - V .  W ( A 9 )  

p Dt 

and for steady relative flow 

_ _  Rcs  01411 ] = (gradient of W in direction of Rc~) = : - - = .  VW 
0X2 J t IRcsl 

(B1) 

OXl }, IRcsl d+ IRc~l 
(B2) 

o O D 
wj - -  = - W "  V = - -  (A10) Wii oxi Ox I Dt 

then 

hence 

Ox 2 Ox 1 

[W[ R .  
IRcsl IR.t 

• V~¢l= ---Rcs . v ( w  2 ] 
l 

R~ 
(B3) 

1 D 1 D p ]  O(Wicrq) ~ V 2 ( - ~ )  + ' ~ - ~ ( -  p - ~  - ] 

Oxj 

For a thin, collateral boundary layer on a convex surface 
Rcs • V(W2/2)  > 0, because W increases in the direction of Rcs 
and so (OW1/Ox2)(OWz/OX 1) <0.  The reverse is true for a con- 
cave surface. 

+ Oxj Ox i 3 ~ - 1  ] ( A l l )  

The term 

OXj OX i -- OXj ]i=j t ~Xj OX"~I ]iq'j 

where 

(A12) 

(A13) 

; ~  dx I- R= cl~ 
F W.Wl 

Current 
streamline 
at time t 

1 
Figure BI I l lustrat ing the local streamline at point P and 
time t, in relation to the selected coordinates (1,2) and 
a p p r o p r i a t e  v e l o c i t y  v e c t o r s  
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For a 2-D plane flow W 3 = 0, O/Ox 3 = 0 so 

[ ) =_ 2( °wi °w' °w' ° <  + - -  - -  - -  
OXj OX i i.l=j OX20X1 OX3 oX2 OX10X3 

(7) = 2 O x  20x---7 = -2~c2s " V 
(B4) 

Rothalpy conservation in turbomachines: C. Bosman and O. C. Jadayel 
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